For 1.00 m wide slab strip:
Self-weight: go=0.15m×1.00m×25.00 kN/m3= 3.75 kN/m, Covering load: ge=1.00 kN/m (given),
Total dead load: g=4.75 kN/m, Live load: q=5.00 kN/m (given).
Thus, the total load is p=γg×g+γq×q=1.35×4.75+1.50×5.00=13.9 kN/m. The bending moment at the support is calculated using table b3, line 1.
Self-weight: go=0.15m×1.00m×25.00 kN/m3= 3.75 kN/m, Covering load: ge=1.00 kN/m (given),
Total dead load: g=4.75 kN/m, Live load: q=5.00 kN/m (given).
Thus, the total load is p=γg×g+γq×q=1.35×4.75+1.50×5.00=13.9 kN/m. The bending moment at the support is calculated using table b3, line 1.
M1=-p×L2/8=-13.9×4.02/8=-27.8 kNm,
V01=p×L/2+M1/L=13.9×4.0/2-27.8/4.0= =20.8 kN
V10= p×L/2-M1/L=13.9×4.0/2+27.8/4.0= =34.8 kN
maxM01=V012/(2×p)=20.82/(2×13.9)= =15.6 kNm
According to §4.5.2, from expression (3) →
C1=(-13.9×4.03/24+20.8×4.02/6)m2= =18.4 kN×m2
Expression (4) →
(13.9/6)z3-(20.8/2)z2-0+18.4=0 →
2.317z3-10.4z2+18.4=0 →zmax=1.68 m
(2) → y(z)=1/9.225×[(13.9/24)×1.684-(20.8/6)×1.683+0×1.682+18.4×1,68)] → y(1.68)=2.07 mm
V01=p×L/2+M1/L=13.9×4.0/2-27.8/4.0= =20.8 kN
V10= p×L/2-M1/L=13.9×4.0/2+27.8/4.0= =34.8 kN
maxM01=V012/(2×p)=20.82/(2×13.9)= =15.6 kNm
According to §4.5.2, from expression (3) →
C1=(-13.9×4.03/24+20.8×4.02/6)m2= =18.4 kN×m2
Expression (4) →
(13.9/6)z3-(20.8/2)z2-0+18.4=0 →
2.317z3-10.4z2+18.4=0 →zmax=1.68 m
(2) → y(z)=1/9.225×[(13.9/24)×1.684-(20.8/6)×1.683+0×1.682+18.4×1,68)] → y(1.68)=2.07 mm
No comments:
Post a Comment
Civil engineering is a professional engineering discipline that deals with the design, construction, and maintenance of the physical and naturally built environment, including works like roads, bridges, canals, dams, and buildings..........